WS500 Manual Software v 1.06

Version 1.10 Part number 91-00-32

WS500

BRITISH FEDERAL

British Federal Ltd.,

Castle Mill Works, Birmingham New Road, Dudley, West Midlands, DY1 4DA

> Tel: 01384 455400 Fax: 01384 455554

Contents

Introduction	3
Specifications	4
Connections	5
Configuring the WS500	6
Configuration Parameters	6
Programming the WS500	10
Programme parameters	11
Seam Welding Current Profiles	12
Welding with the WS500	14
Selecting a Weld Programme	14
Starting a Weld	15
Second Stage Start	15
End of Sequence Output	16
Further Functions	18
Counter	18
Cross Interlock	19
Glossary of Terms	20
British Federal International Agents	24

2

Introduction

The WS500 welding control offers the reliability that ensues from simplicity. The WS500 is a compact, robust unit providing basic control for resistance welding. The membrane front panel provides a neat, water resistant finish and incorporates four push buttons and a display for programming purposes. Programming is quick and simple, as is operation of the control. Installation is also easy. The WS500 has four mounting studs and sixteen connections on a plug-in connector block.

The principle features of the WS500 are:

- Operates from 24 volt DC supply
- 50 Hz or 60 Hz operation
- 4 inputs and 4 outputs plus weld on/off
- 1 to 8 programmes, depending on mode of operation
- Configurable for:
- Single spot Repeat spot Half cycle Roll spot Seam
- Two weld intervals and pulsation
- Retract/High lift option
- Counter with configurable lock-out
- Cross-interlock facility (2 options)
- Built-in test routines

Specifications

Supply voltage:	24 V DC
Supply current:	< 500mA (no outputs on)
Synch. signal:	27 V AC @ 1 VA
Mains frequency:	50 or 60 Hz
Number of digital inputs:	4
Input requirement:	24 V DC, < 10mA
Number of digital outputs:	4
Digital output rating:	24 V DC, < 500mA
Pulse drive output:	5KHz, 1:10 mark/space. First pulse 24V, subsequent pulses >15V
Size:	160mm x 122mm x 35mm (50mm including connector)
Weight:	620gms

Connections

General Connection Diagram

Configuring the WS500

The WS500 has various configurations to tailor it for specific applications.

- Press until it the display reads **WS500** V1.04 F Hold down and then press . The display will read **CONFIGURE**. The display will read, for example, CONFIG Press 00 This is TYPE the first item in the list of configuration parameters. If you wish to change the parameter setting (in this case 00) use the a) keys to make the required selection. Press to enter the value. If you do not wish to change this parameter move directly to b). to move to the next item in the configuration file. Press b)
- Repeat steps a) and b) until the configuration is complete, then press

Configuration Parameters

The items in the list of configuration parameters is shown below.

Parameter	Options
Config type	0 to 12
Retract	None
	Simple
	High Lift +
	High Lift -
Frequency	50 Hz or 60 Hz
Interlock	On or Off
Heat range	Low or High
X-lock type	External or Ring

Config Type

The WS500 has 13 modes of operation, numbered as "Types" 0 to 12. Each Type offers different features, different numbers of weld programmes and may use the input and output connections in different ways. The following table gives a brief description of what each Type does, and shows the number of weld programmes available for that option.

The table should be used in conjunction with the tables of Input and Output Allocations which show how the inputs and outputs are used for each configuration Type.

Config Type	WS500 Operation	No. of weld
		progs.
00	Spot/repeat	8
	Simple spot welding with single or repeated weld sequences	
	and no other functions.	
01	Spot/repeat with cross interlock	4
	Spot welding with single or repeated weld sequences giving an interlock output to prevent other timers welding at the same time.	

02	Spot/repeat with retract	4
	Spot welding with single or repeated weld sequences with an	
	input and output for controlling the "open" and "working"	
	positions of the welding gun.	
03	Spot/repeat with counter	4
	Spot welding with single or repeated weld sequences with a	
	counter that gives an output when the programmed number	
	of welds has been reached.	
04	Spot/repeat with cross interlock and retract	2
	Spot welding with single or repeated weld sequences giving	
	an interlock output to prevent other timers welding at the	
	same time, and an input and output for controlling the "open"	
	and "working" positions of the welding gun.	
05	Spot/repeat with counter and retract	2
	Spot welding with single or repeated weld sequences with a	
	counter that gives an output when the programmed number	
	of welds has been reached and has an input and output for	
	controlling the "open" and "working" positions of the welding	
	gun.	
06	Spot/repeat with counter and cross interlock	2
	Spot welding with single or repeated weld sequences with a	
	counter that gives an output when the programmed number	
	of welds has been reached and with an interlock output to	
	prevent other timers welding at the same time.	
07	Spot/repeat with counter, cross interlock and retract	1
	Spot welding with single or repeated weld sequences with a	
	counter that gives an output when the programmed number	
	of welds has been reached, also an interlock output to	
	prevent other timers welding at the same time and with an	
	input and output for controlling the "open" and "working"	
	positions of the welding gun.	
08	Half cycle	8
	Spot welding using only a half cycle of weld time.	
09	Half cycle with cross interlock	4
	Spot welding using only a half cycle of weld time and giving	
	an interlock output to prevent other timers welding at the	
	same time.	
10	Half cycle with counter	4
	Spot welding using only a half cycle of weld time also with a	
	counter that gives an output when the programmed number	
	of welds has been reached	
11	Roll-spot	8
	Spot welding with an output to operate motor-driven welding	
	wheels during the OFF time between weld sequences.	
12	Seam	8
	Uses seam wheels, a motor drive and continuous, or	
	modulated current, to provide a seam weld.	

Input Allocations

Config Type	Input 1	Input 2	Input 3	Input 4
	(Pin 13)	(Pin 14)	(Pin 15)	(Pin 16)
0	Start	Prog. sel. bit 1	Prog. sel. bit 2	Prog. sel. bit 4
1	Start	Prog. sel. bit 1	Prog. sel. bit 2	2 nd stage
2	Start	Prog. sel. bit 1	Prog. sel. bit 2	Retract
3	Start	Prog. sel. bit 1	Prog. sel. bit 2	Count reset
4	Start	Prog. sel. bit 1	Retract	2 nd stage
5	Start	Prog. sel. bit 1	Count reset	Retract
6	Start	Prog. sel. bit 1	Count reset	2 nd stage
7	Start	Retract	Count reset	2 nd stage
8	Start	Prog. sel. bit 1	Prog. sel. bit 2	Prog. sel. bit 4
9	Start	Prog. sel. bit 1	Prog. sel. bit 2	2 nd stage
10	Start	Prog. sel. bit 1	Prog. sel. bit 2	Count reset
11	Start	Prog. sel. bit 1	Prog. sel. bit 2	Prog. sel. bit 4
12	Start	Prog. sel. bit 1	Prog. sel. bit 2	Prog. sel. bit 4

Output Allocations

Config Type	Output 1	Output 2	Output 3	Output 4
	(Pin 12)	(Pin 11)	(Pin 10)	(Pin 9)
0	Weld air valve	End of sequence	Not used	Not used
1	Weld air valve	End of sequence	Interlock	Not used
2	Weld air valve	End of sequence	Not used	Retract
3	Weld air valve	End of sequence	Counter	Not used
4	Weld air valve	End of sequence	Interlock	Retract
5	Weld air valve	End of sequence	Counter	Retract
6	Weld air valve	End of sequence	Counter	Interlock
7	Weld air valve	Interlock	Counter	Retract
8	Weld air valve	End of sequence	Not used	Not used
9	Weld air valve	End of sequence	Interlock	Not used
10	Weld air valve	End of sequence	Counter	Not used
11	Weld air valve	Motor	Not used	Not used
12	Weld air valve	Motor	Not used	Not used

Retract

Some operational modes provide a Retract facility. This feature is used when a welding gun has two "open" states, a wide open state for positioning the gun around a component, and a working state.

There are three modes of Retract operation:

- **Simple Retract** The Retract Output directly mimics the Retract Input. The Retract Output must be off for welding to proceed. If the Retract Output is on the display will read "Retract not ready".
- **Hi Lift +** With this mode of retract, an impulse on the Retract Input changes the state of the Retract Output. In this case the Retract Output must be on for welding to take place. If the Retract output is off, the display will read, "Retract not ready".

Hi Lift - With this mode of retract, an impulse on the Retract Input changes the state of the Retract Output. In this case the Retract Output must be off for welding to take place. If the Retract output is on, the display will read, "Retract not ready".

Frequency

Select frequency of mains supply.

Interlock

Select Interlock ON for machines where the electrodes are controlled by the WS500's weld air valve output. In this mode, when a weld sequence has progressed beyond the Squeeze time, the sequence continues to completion, regardless of the Start signal.

Select Interlock OFF for machines with no weld air valve, such as pedal spot welders and poke welders. In this mode, the weld sequence is terminated if the Start signal is removed before the sequence has completed.

Heat Range

Select Heat Range High for hotter heat settings. The use of this setting may result in "dead angle" at higher heats. (After a certain point, increasing the heat no longer increases the current).

Select Heat Range Low for cooler heat settings. This should be used if low heat levels in the "High" setting, produce too much current.

X-Interlock type

Select EXT if you are using an external cross-interlock unit.

Select RING if you have wired the WS500 for ring type cross-interlocking

See the section on cross-interlocking for a full explanation.

Programming the WS500

To programme the WS500 press the F key until the display reads EDIT PROGRAM 0
Use the or key to select the programme required. The display will flash. Press to enter the programme number. Press again to move the programmer to the
first parameter. With each parameter use the and keys to select the value, or
type. This will cause the display to flash. When the value is correct enter it by pressing Then press again to move onto the next parameter. At any point pressed to exit programming weld parameters. If the WS500 is in a mode that uses a counter, the
display will read COUNTER. This is programmed in the same way.

The table below shows the welding parameters and the order in which they appear. It should be noted that not all parameters are used in every mode.

Parameter		
Programmes	Range of values	Applicable Config. Modes
Mode	Single or Repeat	0-7
Heat 1	0 – 99	0 – 12
Heat 2	0 – 99	0 – 7, 11 - 12
Presqueeze	0 – 99	0 – 7, 11 - 12
Squeeze	0 – 99	0 – 12
Weld 1	0 – 99	0 – 7, 11 - 12
Cool 1	0 – 99	0 – 7, 11 - 12
Weld 2	0 – 99	0 – 7, 11 - 12
Cool 2	0 – 99	0 – 7, 11 - 12
Pulses	1 – 9	0-7, 11
Hold	0 – 99	0 - 12
Balance	0 - 60	12
Off	0 – 99	0-7, 11
Counter		
Counter now	0 – 9999	3, 5 – 7, 10
End count	0 – 9999	3, 5 – 7, 10
Stop at end	Stop at end/Continue at end	3, 5 – 7, 10

Programme parameters

Mode	Selects either Single Sequence or Repeat Sequence operation. Single Sequence operation performs one weld sequence when the timer is initiated. Repeat Sequence performs successive weld sequences for the duration of the Start signal.
Heat 1	Controls the heat of the first weld interval.
Heat 2	Controls the heat of the second weld interval.
Presqueeze	The time (in cycles) allowed for the electrodes to meet.
Squeeze	The time (in cycles) allowed for the electrodes to build up full welding pressure on the component.
Weld 1	The duration (in cycles) of the first weld interval.
Cool 1	The time (in cycles) between the first and second weld intervals.
Weld 2	The duration (in cycles) of the second weld interval.
Cool 2	(Only applicable when using pulsations) The time (in cycles) between pulses of Weld 2.
Pulses	The number of times pulses of Weld 2.
Hold	The time (in cycles) for which welding pressure is maintained on the weld after welding current has ceased.
Balance	(Seam mode only) Adjusts the heat of the first half cycle of weld in a seam weld. The adjustment range is 0 to 60. A nominal setting for this is 45. To set it using a weld current meter, measure the current of the +ve half cycles, and the current of the –ve half cycles, then adjust the Balance to get the two readings to be the same. (The "grunt" from the transformer sounds smooth and even for a balanced weld.)
Off	(Only applicable in Repeat mode). The time (in cycles) between successive weld sequences.
Count Now	The number of weld sequences carried out since the counter was reset.
End Count	The number of welds after which the timer will switch on the Counter Output.
Stop/Continue at End	Selects whether or not the timer will initiate further weld sequences when the Counter Output has switched on.

Seam Welding Current Profiles

In seam welding mode (Configuration mode 12) there are two weld pulses and two cool times available. These can be used to give a number of weld current profiles, as shown below.

Seam Continuous

Example settings:

Weld 1 =	10
Cool 1 =	0
Wold 2 -	Ο

vveld	2	=	0
Cool	2	=	0

- Heat 1 = 40
- Heat 2 = 0

Seam Pulsation

Example settings:

Weld 1 =	10
Cool 1 =	5
Weld 2 =	0
Cool 2 =	0
Heat 1 =	40

Heat 2 = 0

Seam Modulation

Example settings:

Weld 1 =	10
Cool 1 =	5
Weld 2 =	10
Cool 2 =	5
Heat 1 =	30
Heat 2 =	70

Example settings:

Example settings:

Weld 1 =	10
Cool 1 =	0
Weld 2 =	10
Cool 2 =	0

Heat 2 = 70

Welding with the WS500

To weld, the WS500 needs to have been configured for your specific application. (See section on "Configuration"). Having been configured, the timer must be programmed with the weld parameters for the job in hand. Several sets of weld parameters can be held in the WS500. Each set of parameters is called a "Programme". (See section "Programming the WS500".)

Selecting a Weld Programme

Using Inputs

Refer to the timer connection drawing and the tables below.

For software versions v1.03 and higher If WS500 has software version v1.03 or higher, external programme selection must be selected.
Press F until the WS500 displays READY.
does not show External Select press until it does, then press .
With the timer displaying External Select, press F to return to normal mode.

Depending on which configuration mode the timer is using, there can be 1, 2, 4 or 8 programmes available. The following tables show how to select programmes for each mode of configuration.

0 on an input means 0v present on input pin. 1 on an input means 24v present on an input.

Mode 7

Only operates on programme 0. No selection necessary.

Modes 4, 5 and 6

Prog. No.	Input 2
0	0
1	1

Modes 1, 2, 3, 9 and 10

Prog. No.	Input 2	Input 3
0	0	0
1	1	0
2	0	1
3	1	1

Modes 0, 8, 11 and 12

Prog. No.	Input 2	Input 3	Input 4
0	0	0	0
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

Using timer keypad

(only applicable to software versions v1.03 and higher)

ress F until the WS500 displays READY.
ress . The display will show either a programme number or External Select.
ress either or to get the required programme number, then press
ress F to return to normal mode.

When the timer is initiated, it will weld using the programme selected by the previous operation, not a programme selected by inputs.

Starting a Weld

When the timer has been configured and programmed, welding can proceed. Select the programme to be used (see previous section) and operate the Start input (input 1). A weld sequence will begin.

The Start signal must be held on until the first weld period. If the Start signal is removed before this, the weld sequence will be aborted.

Second Stage Start

(Applicable only to modes 1, 4,6,7 and 9)

Some modes require a Second Stage Start. Where this is needed the timer checks input 4 when the weld sequence has reached the end of the Squeeze time. If the input has 24v on it, the sequence continues. If there is no voltage present on input 4, the sequence waits for the signal.

End of Sequence Output

(Applicable to all modes except 7, 11 and 12)

In Single Spot operation, at the end of the weld sequence the End of Sequence output switches on. If the Start signal is still present, the End of Sequence signal remains on until the Start signal is removed.

Start Signal	
Weld Sequence	 _
End of Seq. Signal	_

In Single Spot operation, at the end of the weld sequence the End of Sequence output switches on. If the Start signal is absent, the End of Sequence signal switches on for a time programmed as EOS Duration in the timer configuration.

Start Signal	
Weld Sequence	
End of Seq. Signal	

In Repeat Spot operation the End of Sequence output switches on for the Off time between sequences, and for the time entered in the timer configuration as EOS Duration, after the final sequence.

Start Signal	
Weld Sequence	
End of Seq. Signal	

Further Functions

Counter

Certain modes of operation provide a counter facility. In this an "End Count" value is programmed into the WS500. A counter within the WS500 increments each time a weld sequence is completed. When the number of welds completed equals the number of welds programmed as "End Count" the Count Output switches on.

If "Stop at End" has been programmed, the WS500 will ignore Start inputs when this stage has been reached. If "Continue at End" has been programmed, welding will continue.

The counter and the Count Output can be cleared by applying a signal to the Reset input.

At any stage the progress of the counter can be observed, and changed if required. This is the value "Count Now", found in the programming section.

Cross Interlock

A cross interlock is an arrangement of welding controls that ensures no more than one control is welding at any time. This is to ensure that the mains supply is not over-loaded.

WS500 offers a choice of two cross-interlocking schemes, called EXTernal and RING.

EXTernal cross-interlock.

This option requires an external cross-interlock unit. Interlocking is achieved by the Cross Interlock output from the timer switching on at the end of squeeze time and switching off at the beginning of the Hold time. Cross Interlock outputs from a number of timers are connected to the Cross Interlock Unit. This grants welding permission to one timer at a time by controlling the Second Stage Start inputs of the timers. The cross-interlock unit requires one channel for each connected timer.

RING cross-interlock.

This option requires no external hardware. Timers are simply wired in a ring configuration, with the cross interlock output from one timer feeding the second stage input of the next timer. Any number of timers may be connected in this way. Interlocking is achieved by an internal protocol which grants welding permission to one timer at a time.

Glossary of Terms

AVC	Automatic Voltage Compensation	
CCR	Constant current regulation. See Constant Current	
Const I	Constant current	
Constant current	Closed loop control of weld current resulting in weld current being regulated to a programmed value. The current achieved by this method of control is independent of external influences.	
ControlNet	A network for controlling a number devices (a device could be a weld timer).	
Cool	The time interval, in a weld sequence, between applications of current.	
Cool 1	The time period, within a weld sequence, between the end of Weld 1 pulse and the start of Weld 2 pulse.	
Cool 2	The time period, within a weld sequence, between successive applications of the Weld 2 pulse (pulsations).	
Cool 3	The time period, within a weld sequence, between the end of Weld 2 pulse and the start of Weld 3 pulse.	
Cool time	A period of time, in a weld sequence, between applications of current. – Expressed in mains cycles.	
СТ	Current transformer	
Current transformer	A coil of wire wound on a circular core. This is used to measure the current in a wire passing through the circular core. The weld timer	
	uses this to measure primary current	
DeviceNet	A network for controlling a number stations (a station could be a	
Deviceivei	weld timer).	
Downsiope	A linear decrease in current from the weiding value to a final value, applied to the main weld pulse (Weld 2).	
Downslope time	Time taken for current to decrease from the welding value to a final value. – Expressed in mains cycles.	
End of sequence	An output that switches on as the electrodes open on completion of a weld. The output indicates completion of the weld sequence.	
EOS	End of sequence.	
Ethernet	A network for programming a number devices (a device could be a weld timer).	
Fieldbus control	General term for control of timers over a network.	
Heat	A measure of power put into a phase angle controlled (non- constant current) weld. The Heat relates directly to the firing angle in electrical degrees, on the mains voltage waveform. – Expressed as a percentage.	
Heat 1	% Heat set for weld interval 1 (Weld interval 1 is sometimes referred to as "preheat").	
Heat 2	% Heat set for weld interval 2. Weld interval 2 is usually programmed to provide the actual weld, unlike weld $1 - preheat$, and weld $2 - post$ heat.	
Heat 3	% Heat set for weld interval 3 (Weld interval 3 is sometimes referred to as "post heat").	
Heat stepping	See Stepping.	
Hold	The time, in a weld sequence, between the last application of	

	current and the electrodes opening. This time allows the molten	
	material created by the weld process, to solidity.	
Hold time	The time period following the last weld pulse, prior to the electrodes	
	opening. This period allows the molten material to solidity. –	
	Expressed in mains cycles.	
Hub	A component used with the Ethernet network for connecting a	
	number of devices such that all data appears on all parts of the	
	network.	
I.P. address	Internet Protocol Address. A unique address used by devices on an	
	Ethernet network.	
IGBT	Insulated Gate Bipolar Transistor. A type of power transistor used in	
	inverters.	
Initiation signal	The signal that starts the weld sequence.	
Interbus S	A network for controlling a number stations (a station could be a	
	weld timer).	
Inverter	See Medium Frequency Inverter	
kA	Kilo amp. 1000 amps	
KSR	German initials for constant current.	
kVA	Unit of power. 1000 volt amps	
LED	(Light Emitting Diode) An indicator that gives light when energised.	
	There are different coloured types and some types can change	
	colour.	
mA	Milli-amp 1/1000 amp	
Medium Frequency	A piece of equipment for powering a Medium Frequency welding	
Inverter	transformer.	
Medium frequency	System of welding using 1000 Hz or 1200 Hz instead of mains	
welding	frequency.	
MF	Medium frequency (welding)	
mV	Milli-volt 1/1000 volt	
Network adapter	An interface card for a computer giving it access to an Ethernet	
	connection.	
Off time	In a Repeated weld sequence, this is the time between sequences.	
	 Expressed in mains cycles. 	
PC	Personal computer	
PHA	Phase angle control.	
Phase angle control	Open loop control of weld current using Heat setting. This method	
	does not use Constant Current and the current achieved can be	
	influenced by external parameters such as mains voltage, cable	
	lengths, etc	
Ping	A diagnostic programme that tests if a station on an Ethernet	
	network is responding.	
Post heat	The application of current to prevent the weld (carried out by Weld	
	cooling too quickly. Sometimes called "Weld 3".	
Pre heat	The application of current, in preparation for the actual weld current.	
	This application of current is intended to burn through the plating or	
	surface contamination of the work piece. Sometimes call "Weld 1".	
Presqueeze	The time interval in a weld sequence for the electrodes to close onto	
	the work piece.	
Presqueeze time	The time allowed for the welding electrodes to close onto the	
	components to be welded. – Expressed in mains cycles.	
Primary current	The current in the primary winding of the weld transformer The	
	current drawn from the mains whilst welding.	
Profibus DP	A network for controlling a number devices (a device could be a	
	weld timer).	
Profibus FMS	A network for programming a number devices (a device could be a	

	weld timer).	
Prog Sel	See Programme Select i/p	
Programme Select I/P	An input, usually one of several, giving a binary number to select the	
Proportional valve	A device for regulating air-line pressure. Controlled by $0 - 10 \text{ v DC}$	
Pulsations	The number of times the main weld interval (Weld 2) is applied	
Fuisations	Successive applications of Wold 2 are separated by a Cool time.	
	Timor output for driving thyristor firing circuit	
Pulse Drive O/F	A system whereby the electrodes have two open positions: Fully	
Nellaci	open to move the weld gun to and from the work piece, and an intermediate working position, for normal welding.	
Retract air valve	For use on a gun where the electrodes can be opened and closed in	
	two stages. This is an electrically controlled valve for admitting air to	
	the air cylinder responsible for first stage of closing of the	
	electrodes.	
RS232	Serial communication system suitable only for short cables. This is	
	the type of connection made via a COM socket on a computer.	
Second Stage	A signal required to allow the weld sequence to proceed from the	
Initiation	end of the Squeeze time to the beginning of the Weld interval. If the	
	timer requires this signal, and it is absent, the sequence is halted	
	until the signal is given. This input may be used to check electrode	
	force has reached the correct value, or to make the sequence wait	
	until another machine has finished it's weld.	
Second Stage Start	See Second Stage Initiation	
Secondary current	The current in the secondary winding of the weld transformer The	
, , , , , , , , , , , , , , , , , , ,	weld current.	
Squeeze	The time interval in a weld sequence for the electrodes to exert full	
	welding force on the work piece.	
Squeeze time	The time allowed for the welding electrodes to build up full pressure	
	on the components to be welded. – Expressed in mains cycles.	
Start 1	The signal that starts the weld sequence on Gun 1.	
Start 2	The signal that starts the weld sequence on Gun 2.	
Start signal	The signal that starts the weld sequence.	
Stepper	A programme of parameters required for stepping.	
Stepping	A technique of progressively increasing the weld current over the	
	course of a large number of welds in order to compensate for the	
	effects of electrode wear.	
Switch	An Ethernet device for connecting other Ethernet devices together	
	having the ability to direct packets of data to a specific destinations	
	rather than the whole network.	
Synchronisation	The actions of the weld timer are synchronised to the zero – voltage	
	crossing points of the mains.	
Thermostat	A switch device that operates at a certain temperature.	
Thyristor	High power switch used for switching the mains supply to the weld	
	transformer. Thyristors are controlled by a pulse drive.	
Tip dress	An input to a weld timer acknowledging that the electrodes have	
acknowledge	been dressed.	
Tip dress request	An output given by a weld timer to indicate that the electrodes	
1	require dressing.	
Tip dressing	Filing or machining worn electrodes to restore their original shape	
	and dimensions.	
	An adaptation of a Stepper to facilitate automatic dressing of	
	electrodes.	
Toroid	A device used for sensing current in a cable. The current carrying	
	<u> </u>	

	cable must pass through the toroid.	
Upslope	A linear increase in current from an initial value to the welding value, applied to the main weld pulse (Weld 2).	
Upslope time	Time taken for current to increase from an initial value to the welding value. – Expressed in mains cycles.	
VA	Volt amp	
WAV	Weld air valve.	
Weld 1	A weld pulse intended to burn through surface coatings in preparation for the next weld pulse which will actually weld the components. Sometimes called Pre Heat. – Expressed in mains cycles.	
Weld 2	The weld pulse that welds the components together. – Expressed in mains cycles.	
Weld 3	A weld pulse following the pulse that welded the components together, included to slow the rate of cooling of the weld, sometimes called Post Heat. – Expressed in mains cycles.	
Weld air valve	Electrically controlled valve for admitting air to the air cylinder responsible for forcing the weld electrodes together.	
Weld current	High current passed from one electrode to the other, through the components being welded. The current must be large enough to generate sufficient heat to melt the metal and produce a weld.	
Weld Transformer	Electrical component for converting mains voltage input to low voltage, welding current output.	

British Federal International Agents

Brazil (Fransisco Seminara)	Fransisco Seminara Manuel Belzu 2769 CP 1636 – Olivos Buenos Aires Argentina.	Tel: 00 54 11 47950832 Fax: 00 54 11 47965361
Chile (Oscar Toro)	Remi Ltda Casilla 625, Chileo 1485 Santiago, Chile	Tel: 00 562 556 9025 Tlx: 245654 REMI Fax: 00 562 555 2585
China (Cindy Zhang)	British Federal Beijing c/o CBTG Office Floor 2, 31 Technical Club 15 Guanghua Li Jianguomenwai Beijing 100020 P R China	Tel: 00 86 10 659311/2/3 Fax: 00 86 10 65936610 Email: bfb@ht.rol.cn.net
Denmark (Bertil Johnsson)	R-C Industrielektronik N. Industrigatan 29 S-314 31 Hyltebruk, Sweden	Tel: 00 46 345 10646 Fax: 00 46 345 17074 Car phone: 10 249 1323 Email: rcibj@algonet.se
Egypt (Reda Foty)	Intermass 13, Mahmoud Bassiouni Street 11111 Kasr El Nil., Cairo, Egypt	Tel: 00 202 578 0815 TLX: 21671 MTAT UN Fax: 00 202 578 3177
Finland (Bertil Johnsson)	R-C Industrielektronik N. Industrigatan 29 S-314 31 Hyltebruk, Sweden	Tel: 00 46 345 10646 Fax: 00 46 345 17074 Car phone: 10 249 1323 Email: rcibj@algonet.se
Germany (Götz & Mark Burkhardt)	Burkhardt Industrievertretungen Falkenweg 4 65606 Villmar	Tel: 00 49 6482 941500 (sales) 00 49 6482 941501 (service) Fax: 00 49 6482 5688
Greece (Tassos Koublis)	Tassos Koublis15A Xenophontos StreetAthens 118, Greece	Tel: 00 301 323 6131 Tlx: 219239 LEKA GR Fax: 00 301 653 6929
	Interklima:	Tel: 00 301 653 6922/651 2895 Tlx: 221599 INTE GR
India (Deepak Krishnankutty)	Verson Internatinal India Flat D 'Eden Rock' Yellappa Chetty Layout 37 Ulsoor Road	Tel: 00 91 80 558 6890 Fax: 00 91 80 558 8284

Bangalore 560 042 India

Indonesia (Tan Hean & Margaret Tan)	Industrial Power Eng Sdn Bhd 16 Jalan SS4/17 47301 Petaling Jaya Selangor, Malaysia	Tel: 00603 7747 109 Tlx: RS 37738 PMBELA Fax: 00 603 7765 105 Cables: INPOW Home: 00 603 7184 115 Car phone: 011 3462 07
Iran (Mrs. P. Ford)	Martin Electric Mfg Ltd Poplars Place, Turners Hill Road, Copthorne, West Sussex, RH10 4HH	Tel: 01342 713280 Tlx: 957320 TELXUS G Fax: 01342 713666
	Iran Welding Industries Ltd 335/337, 3rd Floor Sakhteman Aluminium Jomhouri Street, Tehran, Iran	Tel: 00 9821 671 947 Tlx: 213636 TPBA IR Fax: 00 9821 488 3568
Israel	Adler & Stern Ltd Hamistadeut 206, Haifa Bay Haifa 31014, Israel	Tel: 00 972 441 3859/8630 Tlx: 46400 4 ADLERSTERN 8041
	Mail Address: PO Box 1539, 31000 Haifa, Israel	
Italy (Atilio Alessio)	Alessio Via Urbano Rattazzi 14 15025 Morano sul po (Al) Italy	Tel: 00 39 141 85605/85488 Fax: 00 39 142 85607 Email: ataless@tin.it
Korea Republic of South Korea (David Kim)	Jin 'A' Commerce & Co 132-4, Bangwha 3Dong Kangsuh-ku, Seoul Republic of South Korea	Tel: 00 822 666 1133 Tlx: K23413 PANWELD Fax: 00 822 666 1441/2 Email: jinacom@interpia.net
Malaysia (Tan Hean Margaret Tan)	Industrial Power Eng Sdn Bhd 16 Jalan SS4/17 47301 Petaling Jaya Selangor, Malaysia	Tel: 00603 7747 109 Tlx: RS 37738 PMBELA Fax: 00 603 7765 105 Cables: INPOW Home: 00 603 7184 115 Car phone: 011 3462 07
Mexico (José Maria Blix)	British Federal Mexico, S.A. de C.V. Av. Toluca # 373-M Col. Olivar de Los Padres Mexico, D.F. 01780 Mexico	Tel: 00 525 668 3915 Fax: 00 525 668 2598 Email: jmblix@cs.com

Monterrey (Enrique Michelena)		Tel: 00 528 347 8626 Fax: 00 528 346 5009
New Zealand	BOC New Zealand Industrial Gases Ltd. 21-27 Epsom Road Christchurch, New Zealand	Tel: 00 643 348 7199 Fax: 00 643 343 0463
Northern Ireland (Brian Watson Andy Hyslop)	Modern Tool (Industrial Supplies) Ltd 289, Shore Road, Belfast, BT15 3PW, N. Ireland	Tel: 01232 771188 Fax: 01232 774111
Peru (Emilio Navarro)	Soldaduras Andinas SA Apartado Correo 1957 Lima, Peru Mail Address: SkywayUSA Mail, Box Centre 7225 NW 25 St, Suite 100 Box 044, Miami, Florida 33122, USA	Tel: 00 511 474 2758 Fax: 00 511 474 4501/0967 Cables: Solandina
Philippines (Peter Lee)	Mesco PO Box 468 Makati Metro Manila 1299 Philippines	Tel: 00 632 673 4301-5/631 3767 Tlx: 43107/42267 Fax: 00632 631 4028 Home Tel: 00632 810 7945/47 Home Fax: 00 632 810 2978
Singapore (Tan Hean Margaret Tan)	Industrial Power Eng Sdn Bhd 16 Jalan SS4/17 47301 Petaling Jaya Selangor, Malaysia	Tel: 00603 7747 109 Tlx: RS 37738 PMBELA Fax: 00 603 7765 105 Cables: INPOW Home: 00 603 7184 115 Car phone: 011 3462 07
South Africa (Ian Barkhuizen)	B.F.South Africa PO Box 67202 Bryanston 2021 South Africa	Tel: 00 27 11 702 2000 Fax: 00 27 11 468 3098 Mobile: 00 27 83 305 5050
(Tony Mulhearn)	B.F.South Africa African Timbers Complex Haupt Street Sidwell Port Elizabeth 6001 South Africa	Tel: 00 27 41 41 2689 Fax: 00 27 41 41 2680 Mobile: 00 27 83 25 26 381

Sweden (Bertil Johnsson)	R-C Industrielektronik N Industrigaten 29 S-314 31 Hyltebruk, Sweden	Tel: 00 46 345 10646 Fax: 00 46 345 17074 Car phone: 10-249 1323 Email: rcibj@algonet.se
Thailand (Tan Hean Margaret Tan)	Industrial Power Eng Sdn Bhd 16 Jalan SS4/17 47301 Petaling Jaya Selangor, Malaysia	Tel: 00603 7747 109 Tlx: RS 37738 PMBELA Fax: 00 603 7765 105 Cables: INPOW Home: 00 603 7184 115 Car phone: 011 3462 07
USA (Ed Vivian)	British Federal North America 1000 N. Opdyke Suite "E" Auburn Hills, MI 48326	Tel: 001 248 371 0299 Fax: 001 248 371 0290 Car: 001 248 321 3933 Email: sales@bfna.net
Venezuela (Jose Oller)	Seprotec C.A. Calle Columbia #92-29 San Polas Valencia 2001 Venezuela	Tel: 00 58 144 209595 Fax: 00 58 417 16517